Web Lesson 14: Transformations 2

The Interactive Web-Lesson below has questions embedded
So do it carefully, as your answers are sent to me!

  • When a question pops up, if you want to see the movie again, click ‘Hide’ (top right corner)
  • You CAN'T retry a ‘flopped’ question: So PAY ATTENTION and THINK!
  • When you get a question ‘CORRECT’, you'll get an opportunity to ‘SKIP’ the explanation:
    Click the arrow in the right (but be quick!)
 
 
Transformations II:
 
 

Sketching Curves using Transformations

Rules 1-6 we already knew from Web Lesson #13

Rule 1: Make sure the brackets are shown. Fractions often have brackets that we don't bother to show:

         y  =    1       should be written:    y  =    1  
                x-2                                  (x-2)
  
        y  = 4 - sin x   can be written as:    y  =  4 - sin(x)
 

Rule 2:

The term with 'x' in it should be the first term. If not, then swap the terms:

        y  =  4  -  x³   can be written as:    y  =  - x³  +  4 
             └─┘└─────┘                             └────┘└────┘
 

Rule 3: ‘+k’ INSIDE the brackets shifts the curve left by ‘k’

Rule 4: A ‘+C’ OUTSIDE the brackets shifts the curve up by ‘+C’

Rule 5: A ‘–’ (i.e. a negative sign, or a ‘Χ-1’) OUTSIDE the brackets reflects the curve in the x-axis

Rule 6:A ‘–’ (i.e. a negative sign, or a ‘Χ-1’) INSIDE the brackets reflects the curve in the y-axis

The NEW RULES we are ADDING today are:

Rule 7:

A ‘ΧB’ INSIDE the brackets squashes the curve by ‘B’ along x (a squash of ‘\(\times B\)’ is the same as a stretch of ‘\(\times \frac{1}{B}\)’)

Rule 8:

A ‘ΧA’ OUTSIDE the brackets stretches the curve by ‘A’ along y

 

Note:

       A  stretch of 1/3  is the same as a  squash  of 3
       A  squash  of 1/4  is the same as a  stretch of 4
       A  stretch of 1/5  is the same as a  squash  of 5
            ╘═════════╤═════════╛                      ╘══════════╤══════╛
                      │                                           │
                      │    ┌─────────────────────────────────┐    │
                      └───►┤    It's easier to perform the   ├►───┘
                           │   transformation when written   │
                           │  so the number describing the   │
                           │ stretch/squash is bigger than 1 │
                           └─────────────────────────────────┘
  

 

The Cosine Curve:

Below is a graph of the \(y=\cos x\) curve (also called the "Cosine Curve"):

When performing transformations - it is best to start with 1-cycle of the (y=\cos x\) graph:

Starting with 1-cycle of \(y=\cos x\) (as shown above) and by using the same methods as in the movie, sketch the following curves. Use squared or graph paper and use a different grid for each curve.

Make sure you label the points, ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’ on the transformed curve:

For each question, you must also state clearly the transformations you have made

 

Question 1: The ‘PERIOD’ of any curve is the length (along the x-axis) of 1-complete cycle of the curve

Sketch \(y\,=\,\cos \left( 3x \right) \) and hence determine the ‘PERIOD’ of the curve \(y=\cos \left( 3x \right) \)

Deduce the period of i) \(y=\cos \left( \frac{3}{4}x \right) \)    ii) \(y=\cos \left( \frac{2}{5}x \right) \)

Clues:
 
There's only 1-transformation:
 
               y  =   cos(3x)
                           ▲                   ┌─────────────────────────────────┐
                           └───────────────────┤ The ‘Χ3’ is inside the brackets │
                                               │ so squash curve by ‘3’ along x  │
                                               └─────────────────────────────────┘
 
But;  a squash of 3  is the same as   a stretch of  
     ╘══════╤══════╛                 ╘══════╤═══════╛
            │                               │
            │  ┌─────────────────────────┐  │
            └─►┤ It is easier to perform ├►─┤
               │ the transformation when │  
               │    written like this    │  
               └─────────────────────────┘  
                                            
                          ┌─────────────────┴─────────────────────────┐
                           NOT SURE how to stretch by 1/3 along ‘x’? │
                          ├───────────────────────────────────────────┤
                          │ Pick some points on the curve (A,B,C,D,E…)│
                          │ Since we are stretching by ‘1/3’ along ‘x’
                           multiply all of the x-coordinates by ‘1/3’│
                          └───────────────────────────────────────────┘

 

Note: It is easy to see the ‘PERIOD’ as that's basically the x-coordinate of the last point
      of our 1-cycle curve
      The ‘FREQUENCY’ is the number of cycles that will fit into 360°
      There's a simple connection between ‘PERIOD’ and ‘FREQUENCY’
 
                 ┌──────────────┐     R-E-C-I-P       ┌─────────────┐
                 │   PERIOD     ╞════════════════════►│  FREQUENCY  │
                 ├──────────────┤                     ├─────────────┤
                 │length of one │◄════════════════════╡ № of cycles │
                 │complete cycle│     R-E-C-I-P       │   in 360°   │
                 └──────────────┘                     └─────────────┘

 

 

 

Question 2: Sketch: \(y\,=\,2\, -\,2\cos x\)

Clue: 
                                               ┌───────────────────┐     ┌────────────────────┐ 
The method shown in the ANIMATION talks about: INSIDE THE BRACKETS and OUTSIDE THE BRACKETS
                                               └─────────┬─────────┘     └─────────┬──────────┘
                                               ┌─────────┴─────────┐     ┌─────────┴──────────┐
In these hints, we'll use a FLOW-DIAGRAM & say:BEFORE THE FUNCTIONand  AFTER THE FUNCTION 
                                               └───────────────────┘     └────────────────────┘ 
 
                      three→operations→outside →
     nothingmuch ╔═══════════════════════════╗↓
    ↓┌─────────────────────┐                  ║t
    i│         ┌───╨───┐   ┌┴┐                 ║h
    n│    y  =  2    2 cos(x)                 ║e → b→r→a→c→k→e→t→s→!
    s│                        ╔═══════════╧══════════════════════╗
    i│          └───────────────────────────────────────────────┐  
    d│   brackets  └───────────────────────────────┐             
    e│the┌───────┐    └──────────────┐             
     └───┘   ┌───┴───┐               ┌┴─┐         ┌─┴─┐         ┌─┴┐ 
           x ─────────► COS ────────►Χ2────────►Χ-1────────►+2
                       └─┬─┘         └┬─┘         └─┬─┘         └─┬┘ 
                        f(x)       ╚═══════════════════════════════╝
                           ┌───────────┴───┐
                            Χ2 after f(x)          
                            stretch by ‘2’         
                            parallel to y                       └──────────┐
                           └───────────┬───┘┌────────┴──────────┐             
                                           ‘Χ-1’ is after f(x)             
                                            REFLECT IN x-AXIS ┌────────────┴──────┐
                                           └───────────────────┘‘+2’ is after f(x)
                                                                TRANSLATE ? along y
                                                                └───────────────────┘
                                       
                                       
      ┌────────────────────────────────┴──────────┐                           
      │ Not sure how to stretch by 2? Here's HOW: └───────────────┐
      │ Pick a few points along the curve  (i.e. A, B, C, D & E): └─────────────────────┐
      │ Since we are stretching by ‘2’ along y, multiply all of the y-coordinates by ‘2’│
      └─────────────────────────────────────────────────────────────────────────────────┘
And connect these points up again to form the stretched curve:
(Notice that ‘B’ and ‘D’ didn't move - because their y-coordinates were ZERO) 
 
The remaining transformations - REFLECT in x and TRANSLATE BY 2 along the y-axis are easy
(you did stuff like that in Web Lesson 13)!

 

 

Question 3: Sketch: \(y\,=\,-1\,+\,2\cos \left( x\,-\,30 \right) \)

Clue: 
 
Let's start by re-writing with the ‘x’ term on the left:
 
                     y  =  -1 + 2 cos(x-30) 
 
                                               ┌───────────────────┐     ┌────────────────────┐ 
The method shown in the Web Lesson talks about:INSIDE THE BRACKETS and OUTSIDE THE BRACKETS
                                               └─────────┬─────────┘     └─────────┬──────────┘
                                               ┌─────────┴─────────┐     ┌─────────┴──────────┐
In these hints, we use a FLOW-DIAGRAM and say: BEFORE THE FUNCTIONand  AFTER THE FUNCTION 
                                               └───────────────────┘     └────────────────────┘  
 
Of course, these are essentially the same thing:
 
 
              before f(x) ‹‹‹‹‹‹‹ f(x) ›››››››› after f(x)
            ┌──────┴──────┐      ┌─┴─┐   ┌───────────┴───────────┐
      x ───────► -30  ────────► COS ───────► Χ2 ────────► -1  
            └──────┬──────      └─┬─┘   └───────────┬───────────┘
            INSIDE BRACKETS                 OUTSIDE BRACKETS
                   └───────────────────┐            
                              ┌────────────────────┘
                          ┌───┴──┐┌┴┐┌──┴─┐
                     y  =  -1 + 2 cos(x-30)
                                      ▲            ┌─────────────────────────────┐
                                      └────────────┤‘-30’ is inside the brackets:
                                                   so shifts curve LEFT by ‘-30’
                                                    (i.e. same as: …………… by ……) 
                                                   └─────────────────────────────┘
                              
                               ▲    ┌─────────────────────────────┐
                               └────┤‘Χ2’ is outside the brackets:│
                                    │so stretches the curve by ‘2’│
                                    │parallel to the y-axis┌──────┘
                  ┌────────┴─────┐   └──────────────────────┘
                   BLAH BLAH BLAH

 

 

 

Question 4: Sketch: \(y\,=\,-3\cos \left( \frac{2}{3}x \right) \)

Clues:
 
Starting with a sketch of y = cos x:
 
               y  =  -3cos(x)
                           ▲                   ┌─────────────────────────────────┐
                           └───────────────────┤ The Χ2/3 is inside the brackets │
                                               │   so squashes the curve by 2/3  │
                                               │             along x             │
                                               └─────────────────────────────────┘
 
But;  a squash of 2/3  is the same as  a stretch of 3/2 (= 1.5)
     ╘═══════╤═══════╛                ╘════════╤══════════════╛
             │                                 │
             │   ┌─────────────────────────┐   │
             └──►┤ It is easier to perform ├►──┤
                 │ the transformation when │   
                 │    written like this    │   
                 └─────────────────────────┘   
                                               
                             ┌─────────────────┴─────────────────────────┐
                              NOT SURE how to stretch by 1.5 along ‘x’? │
                             ├───────────────────────────────────────────┤
                             │ Pick some points on the curve (A,B,C,D,E…)│
                             │ Since we are stretching by ‘1.5’ along ‘x’
                              multiply all of the x-coordinates by ‘1.5’│
                             └───────────────────────────────────────────┘
 (Notice A didn't move - because its x-coordinate was ZERO)
 
 And connect these points up again to form the stretched curve…
 
 Then carry on with the rest of the transformations

 

 

 

Question 5: Sketch: \(y\,=\,1\,+\,\cos \left( 90\,-\,2x \right) \)

Clues:
 
This is bit tricky - because these a lot of crap INSIDE THE BRACKETS 
 
Remember the SOLUTION to the "MULTIPLE TRANSFORMATIONS INSIDE THE BRACKETS" problem?
 
                                                            ┌──────┐
      x ────────► Χ2 ────────► Χ-1 ─────────► +90 ────────► │ f(x) │ ────────► + 1
                 ╘═══════════════╤═══════════════╛          └──────┘
                                               
                ┌────────────────┴─────────────────┐ 
              ┌─┘ You can see that there are THREE └─┐
              │ transformations INSIDE the brackets! │
              └──────────────────┬───────────────────┘
                                 │
But we know, the SOLUTION IS SIMP│E; REVERSE the order of the operations INSIDE THE BRACKETS:
                                 │                          
                       ┌─────────┴───────┐                  ┌──────┐
      x ────────► Χ2 ────────► Χ-1 ─────────► +90 ────────► │ f(x) │ ────────► + 1
                 ╘═╤═╛        ╘═╤═╛         ╘═╤═╛           └──────┘          ╘═╤═╛
                                                                      	
                                                                            	
                                                                          	
                                                                              	
                                                                           	
                                                                               
                                                                                
It's still gonna be tricky, so here's an applet for you to check!
 

 

 

An unknown function:

Below is a graph of \(y=f\left( x \right) \):

We are NOT told its equation: But we do know that \(f\left( x \right) \) is defined for \(0\leqslant x\leqslant 10\) and it has a root at \(x\,=\,0\) and another root at \(x\,=\,10\). The maximum point \(P\) is at \(\left( 1,5 \right) \).
It passes through the point \(Q\,=\,\left( 4, 1\right) \) and its gradient at \(Q\) is \(-\frac{3}{4}\)

The RANGE of \(y=f\left( x \right) \) is: \(0\leqslant yx\leqslant 5\)

Armed with this information about \(f\left( x \right) \) and the curve of \(y=f\left( x \right) \) (as shown above) and by using the same methods as in the movie, sketch the following curves.

Use squared or graph paper and use a different grid for each curve:

For each question, you must:

  • State clearly the transformations you have made
  • State the domain for which the transformed curve should be defined. Also state its range
  • Identify the point \(P'\) (where \(P\,=\,\left( 1,5 \right) \) is on the transformed curve); and if \(P'\) is a maximum point
  • Identify \(Q'\) (where \(Q\,=\,\left( 4,1 \right) \) is on the transformed curve); and state the gradient at \(Q'\)
  • Identify where the points \(\left( 0,0 \right) \) and \(\left( 10,0 \right) \) have moved to; and determine if they are STILL roots
  • Do you know the roots or the y-intercept of the transformed curve?

 

Question 6: Sketch: \(y\,=\,\frac{1}{2}f\left( \frac{1}{2}x \right) \)

Clue:                ┌────────────────────────────┐
             ┌───────┤‘Χ½’ is inside the brackets │
             ▼       │ so stretch by ‘……’ along x 
    y  =  ½f(½x)     └────────────────────────────┘
                                           ┌──────────────────────────┐
          └─────────────────────────────────┤‘Χ½’ outside the brackets │
                                            │ so stretch by …… along y │
                                            └──────────────────────────┘
 
A stretch of ... is the same as a squash of ... 
 
So, to squash by ... along y, pick some points and divide the y-coordinates by ...

 

 

 

Question 7: Sketch: \(y\,=\,5 -\,f\left( \frac{2}{3}x \right) \)

Clue: 
 
There are no brackets, so we put a brackets around the ‘x’:
  
               y  =  f(x)
                       ▲                        ┌──────────────────────────────┐
                       └────────────────────────┤ The Χ is inside the brackets│
                                                │  so squashes the curve by   │
                                                │            along y           │
                                                └──────────────────────────────┘
 
But;   a squash of 2/3  is the same as  a stretch of 3/2
      ╘═══════╤═══════╛                ╘════════╤═══════╛
              │                                 │
              │   ┌─────────────────────────┐   │
              └──►┤ It is easier to perform ├►──┘
                  │ the transformation when │
                  │    written like this    │
                  └─────────────────────────┘

 

 

 

Question 8: Sketch: \(y\,=\,\frac{1}{2}\left( 1 \,+\,f\left( 2x \right) \right) \)

Clue: 
 
Re-write so the term with ‘x’ is on the left:
  
                      y  =   + ½f(2x)
                          └─┬─┘└───┬────┘
                              ┌───┘
                            └───────┐ 
                          ┌────┴─┐┌──┴─┐
                     y  =  ½f(2x)  + ½

The ‘Χ2’ is INSIDE the brackets, so it stretches the curve by ‘½’ along x
The ‘Χ½’ is OUTSIDE the brackets, so it stretches the curve by ‘……’ along y
The ‘’ is OUTSIDE the brackets so it translates the curve up by ‘……’

 

 

 

Question 9: Sketch: \(y\,=\,2f\left( \frac{1}{2}x\,+\,1 \right) \)

Clue:
 
Again, we encounter the "MULTIPLE TRANSFORMATIONS IN THE BRACKETS problem:
 
      x ─────────► Χ½ ─────────► +1 ─────────► f(x) ────────► Χ2 
                 ╘═════════╤════════╛     
                                         
           ┌───────────────┴────────────────┐ 
        ┌──┘ You can see that there are TWO └──┐
        │ transformations INSIDE the brackets! │
        └──────────────────┬───────────────────┘
                           │
Well - the SOLUTION IS SIMP│E, you just REVERSE the order of those TWO:
                           │
                 ┌─────────┴───────┐
      x ─────────► Χ½ ─────────► +1 ─────────► f(x) ─────────► Χ2 
                 ╘═╤═╛         ╘═╤═╛                          ╘═╤╛
                                                         	 
                                                             	
                                                             	│
                                                                │
                                                               ③  
  

Here's an applet for you to check: DON'T SAY I DON'T GIVE YOU NUFFIN'!
 

 

 

 

Question 10: Sketch: \(y\,=\,10\, -\,3f\left( 1 \,-\,x \right) \)

Clue: 
 
Writing with the ‘x’ term first:

      y  =  -3 f(1 - x) + 10
 
Even inside the brackets - writing with the ‘x’ term first:
 
      y  =  -3 f(-x + 1) + 10

There are quite a lot of transformations do do here, AND, this one is TRICKY
We gotta be sure we do them IN THE CORRECT ORDER!
 
                                             ╔══════════════════════════╗
                                   ╔═════════╝ ⬡⬡⬡ When there are ⬡⬡⬡	╚═════════╗
                     ╔═════════════╣ MULTIPLE TRANSFORMATIONS INSIDE THE BRACKETS ║
                     ║             ╚═════════╗ DO them in reverse order ╔═════════╝ 
                 ╒═══╩═══╕                   ╚══════════════════════════╝
      y  =  -3f(-x +1) + 10
                       ▲ 
                       │
                       │ ╒═════════╕┌──────────────────────────────┐
                       │      ┌─►──┤ ‘+1’ is inside the brackets: 
              └───────►─────═╗ ┌─┘    shifts the curve left by ‘1’ 
                        │ ┌──┘     ╞══════════════════════════════╡       └──►────┘ ╚══╗    │‘Χ-1’ is inside the brackets: 
                         │     └──►──┤ reflects curve in the y-axis 
                         │ ╘════╦════╛└──────────────────────────────┘
                         │      ╚═════ YOU CAN SEE I SWAPPED 'EM
                         │
                             ┌────────────────────────────┐
            └─────────────────┤ Χ3 is outside the brackets 
                                 stretch by … parallel to … 
                                └────────────────────────────┘
            │                          ┌───────────────────────────────┐
            └──────────────────────────┤ ‘Χ-1’ is outside the brackets
                                       │ reflects curve in the x-axis  │
                                       └───────────────────────────────┘
                                             ┌───────────────────────────────┐
                             └────────────────┤ ‘+10’ is outside the brackets 
                                              │ translates the curve …… by …… │
                                              └───────────────────────────────┘

 

Complete this web lesson on separate paper from any other homework

The pass mark (to avoid additional homework on this topic) is: 8/10

Show full workings and highlight your answers